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Abstract: In this article, we explain and demonstrate how to model norm scores with the cNORM 
package in R. This package is designed specifically to determine norm scores when the latent ability 
to be measured covaries with age or other explanatory variables such as grade level. The mathemat-
ical method used in this package draws on polynomial regression to model a three-dimensional 
hyperplane that smoothly and continuously captures the relation between raw scores, norm scores 
and the explanatory variable. By doing so, it overcomes the typical problems of classical norming 
methods, such as overly large age intervals, missing norm scores, large amounts of sampling error 
in the subsamples or huge requirements with regard to the sample size. After a brief introduction 
to the mathematics of the model, we describe the individual methods of the package. We close the 
article with a practical example using data from a real reading comprehension test. 
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1. Introduction
Psychological tests are widely used instruments for measuring a variety of constructs 

such as intelligence, reading ability or personality. In most cases, a test raw score per se is 
not sufficient to assess the ability or personality trait of the test taker. Instead, the achieved 
raw scores have to be compared and interpreted in relation to an adequate reference pop-
ulation [1]. Since critical life decisions such as school placement or diagnosis of mental 
retardation are based on such tests, psychological tests need to supply high quality norm 
scores [1,2]. Unfortunately, the exact distribution of test raw scores in the target popula-
tion is usually unknown; therefore, the norm scores cannot be determined directly. In-
stead, they must be derived from test results of a norm sample, that is, a representative 
subsample of the target population, using statistical tools. 

Over time, different norming approaches have been developed and used. For exam-
ple, modelling the course of distribution parameters such as mean and standard deviation 
over age was used already early on in intelligence test construction (see [1,3–6] for an 
overview). Subsequently, using the regression formula for the mean and the standard de-
viation, it was possible to estimate the norm score at any age. This approach however is 
based on very strong assumptions, e.g., normality, and it produces huge deviations espe-
cially at the upper and lower bounds of a scale. Moreover, mean and standard deviation 
were estimated independently, thus losing statistical power. This modelling approach 
was extended by including joint link functions and further parameters such as skew or by 
modelling non-normal distributions [2]. Other approaches focus on modelling single per-
centile curves over age via quantile regression [7]. Recently, regression-based approaches 
to directly model the raw score distributions [3,8] have become more and more popular. 
One of them is cNORM [9], which was implemented in the R package of the same name. 
In the following section, we present the cNORM approach and its mathematical back-
ground. Moreover, the necessary steps for computing norms with the cNORM R package 
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are explained and, finally, the norming process is demonstrated on the example of a con-
crete data set. We do, however, start this article with a short general introduction about 
norm scores and their relevance for decisions based on psychological tests. 

2. Relevance of Norm Scores in Psychological Testing 
To characterise the current state of methodological development in the field of 

norming, we would like to draw an analogy to the development of classical test theory 
(CTT) and item response theory (IRT). While, at present, there is a convergence between 
the development of both approaches and they have been perceived as rather complemen-
tary [10] for a long time, IRT used to be seen as the more elaborate (but less used) frame-
work for test development. To our understanding, a major reason for the perceived supe-
riority of IRT was the simplistic assumption in former CTT that—apart from the measure-
ment error—the distribution of the raw scores directly reflects the distribution of the abil-
ity or trait to be measured. Consequently, the major concern was to determine the error 
variance entailed in the raw score in order to infer the “true score” of a person or at least 
its confidence interval. In this sense, the “true score” approach of CTT leads to purely 
data-driven processing, without further explanations on how the test raw score results 
from the latent ability of a person. IRT in contrast always relied on the assumption that 
there is a probabilistic relationship between the latent ability of a person and the character-
istics of an item. The test score does not directly represent the latent trait but the probabilistic 
outcome of the interaction between a person’s ability and the item’s difficulty—at least in 
the case of a 1PL IRT model. 

In our view, calculating norm scores is far from being well enough understood and 
investigated so far. This shortcoming might be a consequence of the fact that many test 
constructors view norm scores as only referring to the manifest raw score distribution of 
a test scale. From this perspective, a norm score merely represents the location of a meas-
ured raw score in an empirical cumulative distribution function (eCDF); that is, it only 
conveys the information about the percentile rank regarding the eCDF of the raw scores 
in the norm sample. The mathematical processing of the eCDF therefore is usually limited 
to simple z-standardisation of the raw scores (plus linear scaling where required) in case 
of normality or to an inverse normal rank-based transformation (INT) of the raw scores to 
approximate normality (e.g., [11]). To put it yet another way, the significance of norm 
scores is limited to a manifest frequency information. Contrasting this notion, most test 
users probably see norm scores—at least implicitly—as an indicator of a latent trait, as for 
example in the case of the IQ scores in intelligence testing. 

The notion that norm scores also represent latent traits is by no means an oversim-
plified assumption of psychometrically unskilled test users but is actually grounded in 
the definition of measurement itself. Measurement is defined as the homomorphous as-
signment of a numerical relative to an empirical relative (e.g., [12], p. 47), or, with regard 
to psychometrics, numbers have to be assigned to traits in a way that the original relation-
ship between the traits of different persons is preserved in the numbers. In the case of 
psychometric tests, the latent traits of different persons lead to different test scores. The 
numerical relations between the different test scores should therefore reflect the relations 
between the traits of the persons. Test raw scores do not necessarily reflect all relations 
between latent traits. For example, in many instances, they do not reflect the true intervals 
between latent traits. Moreover, they cannot be interpreted by themselves due to the miss-
ing frame of reference. However, what is represented in the eCDF of raw scores in the 
norm sample is the rank information, that is, information about the raw score that is ex-
pected for a certain rank of the latent trait [13]. It should be noted here that just as in IRT, 
this is a relationship between the latent ability of a person and an expected outcome; how-
ever, unlike IRT, it is not the outcome of a single item but of the whole scale. If the rank 
information derived from the eCDF is projected onto a normal distribution (which is ex-
actly what is achieved via INT) and the latent trait is in fact normally distributed, then the 
derived norm scores do represent the true intervals between latent traits. Therefore, norm 
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scores derived via INT from the eCDF of the raw scores in the norm sample do not only 
represent frequency information of the raw score distribution. Instead, the relations be-
tween two different norm scores—apart from the individual measurement error—neces-
sarily reflect the relations between the underlying latent traits as well. 

Unfortunately, merely collecting data within a large norm sample and using INT to 
determine norm scores nevertheless entails numerous sources of error [13]. First, sam-
pling error contained in the raw scores is fully preserved in the norm scores. Therefore, to 
avoid imbalances in the data, each norm sample has to be representative and of a sufficient 
size. Second, in cases of tests that span a large age range, subsamples for different age 
groups must be collected, in order to control for the development of the latent ability 
across age. Since norm scores are usually determined for each of these groups separately, 
very large sample sizes are needed, making test construction utterly expensive. However, 
imbalances between subsamples can nonetheless occur, and the trajectories of the percen-
tiles across age can exhibit jagged or even implausible courses (e.g., older children obtain-
ing better norm scores for the same raw score than younger children, when normally a 
continuous increase in performance would be expected over age). Third, in many cases 
(e.g., in educational testing), it is hardly even possible to cover the complete age range 
with subsamples of sufficiently narrow intervals. Therefore, in many cases either the norm 
scores are extremely imprecise (e.g., the same scale used for a whole cohort or grade) or 
there are large gaps between the subsamples (e.g., tests normed only at the end of each 
school year). The more a person’s age deviates from the mean age of the respective sub-
sample, the larger the bias becomes in the norm score [8]. Finally, norm scores can only be 
specified for raw scores, which indeed occurred in the norm sample. In summary, con-
ventional norming, that is, INT of the eCDF per subsample, leads to a huge amount of 
additional error—besides individual measurement error—contained in the norm scores 
[1,8,13]. Therefore, the central assumptions of measurement are nevertheless frequently 
violated if norm scores are derived in an overly simplistic way. 

We would therefore like to present a norming procedure (Implementation: R package 
cNORM; [9]), which is able address the abovementioned drawbacks, thereby substantially 
reducing the error variance usually introduced by the norming procedure while simulta-
neously requiring much smaller samples [13]. We suggest to generally model the relation 
between a latent trait and the expected test raw score in the norming process with smooth 
functions, both per age and across age. In the simplest case, with a single norm sample, 
simple polynomial regression is used to model the monotonic function between raw 
scores and norm scores. In the case of additional explanatory variables such as, for exam-
ple, age, a hyperplane is adjusted to the three-dimensional data map of person location 
(i.e., the rank information), raw score and explanatory variable [1,6,8]. The hyperplane is 
adjusted by drawing on polynomial regression as well and represents a continuous statis-
tical model extracting the functional relation between latent trait, raw score and explana-
tory variable from the manifest data. By drawing on the complete data set, imbalances of 
distinct subsamples are smoothed, thus reducing local violations of representativeness and 
raising statistical power. For a detailed description of the types of norming errors, please see 
[13], where we could also show that continuously modelled norm scores more closely reflect 
the latent trait as compared to conventional test norms, retrieved via INT. 

The approach makes only sparse assumptions on the nature of the latent trait and the 
data: First, we assume the existence of a latent trait, which is normally distributed at each 
level of the explanatory variable. Second, this latent trait interacts with the items of a scale, 
which—depending on the features of these items—leads to an expected raw score of each 
single test person and to an expected distribution of raw scores in the population. Note 
that this raw score distribution is not at all restricted to normality. Extreme floor and ceil-
ing effects might, however, at some point be hard to model. Third, norm scores derived 
via INT from the eCDF mirror the normally distributed latent trait. Fourth, we further 
assume a bijective relationship between the norm scores and the expected raw scores at 
each level of the explanatory variable; that is, the relationship must be monotonic (e.g., 
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higher latent traits consistently go along with higher expected raw scores or lower ex-
pected error rates at a fixed level of the explanatory variable). Finally, in the case of covar-
iance between a latent trait and explanatory variable, the percentile curves must develop 
continuously and systematically, but not necessarily monotonically, across the explana-
tory variable. For example, the average raw scores of a test scale measuring fluid reason-
ing increase from childhood to early adulthood, but later, they decrease. Importantly, no 
further presumptions on the nature and course of this development are made. We outline 
the mathematical background of the procedure in the following section. 

3. Theoretical Background: The Rationale of cNORM 
As already described above, the cNORM R package aims at generating continuous 

test norms for psychometrics and biometrics via modelling the higher order three-dimen-
sional relationship between the location 𝜃𝜃 (e.g., the latent trait, expressed as age-specific 
norm score), the explanatory variable 𝑎𝑎 (e.g., age or grade) and the expected test raw 
score 𝑟𝑟 through Taylor polynomials [1,8] (Figure 1). Moreover, it delivers methods for 
analysing the model fit of the used regression-based model. While the procedure was de-
veloped for generating continuous norms depending on explanatory variables such as age 
or grade in performance assessment, it can also be applied to physiological measurements 
such as body weight or height with both continuous and discrete explanatory variables 
(e.g., age, sex or test mode). 

3.1. Norm Scores and Taylor Series 
The main idea behind the norming approach used in cNORM is to consider the ex-

pected raw score 𝐸𝐸(𝑟𝑟) as continuous and a sufficiently often differentiable function de-
pending on the person’s latent parameter 𝜃𝜃 (e.g., his or her reading ability) and the ex-
planatory variable 𝑎𝑎 (e.g., age) [1,8]. Therefore, we can formally specify the function: 

𝐸𝐸(𝑟𝑟) = 𝑓𝑓(𝜃𝜃,𝑎𝑎). (1) 

This kind of modelling approach covers the idea that a person’s expected test score 
is caused by the interaction between a person’s latent trait or ability and a certain test scale 
but additionally depends on her or his value of the explanatory variable. Since the func-
tional relationship is assumed to be continuous and sufficiently differentiable, according 
to Taylor’s theory, the function values around a given point 𝑃𝑃(𝜃𝜃0;𝑎𝑎0) can be expressed 
as such (more strictly, the infinite Taylor series converges only for values 𝜃𝜃 and 𝑎𝑎 within 
a certain radius around the point 𝑃𝑃(𝜃𝜃0;𝑎𝑎0). In practice, however, it has been shown that 
for many applications (e.g., data of psychological or physiological tests) the functional 
relationship can be approximated extremely well over a sufficient range) 

𝐸𝐸(𝑟𝑟|𝜃𝜃,𝑎𝑎) =  �
1
𝑖𝑖! 𝑗𝑗!

𝜕𝜕𝑖𝑖+𝑗𝑗𝑓𝑓(𝜃𝜃0;𝑎𝑎0)
𝜕𝜕𝜃𝜃𝑖𝑖𝜕𝜕𝑎𝑎𝑗𝑗

(𝜃𝜃 − 𝜃𝜃0)𝑖𝑖
∞

𝑖𝑖,𝑗𝑗=0

× (𝑎𝑎 − 𝑎𝑎0)𝑗𝑗 (2) 

where 𝜕𝜕𝑖𝑖𝜃𝜃 and 𝜕𝜕𝑗𝑗𝑎𝑎 are the i-th partial derivation with respect to 𝜃𝜃, respectively, and 
the j-th derivation with respect to 𝑎𝑎. In other words, the function 𝐸𝐸(𝑟𝑟|𝜃𝜃,𝑎𝑎) can be ex-
pressed as the infinite sum of polynomials in 𝜃𝜃 and 𝑎𝑎. Since the infinite Taylor series 
converges to a finite value, namely the value of the raw score function, the individual 
summands and, therefore, the polynomial coefficients must become small very quickly, 
while the powers 𝑖𝑖 and 𝑗𝑗 increase. Hence, the original function should be approximated 
sufficiently well, if the expansion of the Taylor series is stopped after a certain number of 
steps 𝑘𝑘. In doing so, the functional relationship between the expected raw score, latent 
variable and explanatory variable can be approximated by a finite polynomial expression. 
Since the coordinates of the fixed 𝑃𝑃(𝜃𝜃0;𝑎𝑎0) as well as the derivatives at this point are 
constants, the previous equation can be simplified to 
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𝐸𝐸(𝑟𝑟|𝜃𝜃,𝑎𝑎) =  � 𝑐𝑐𝑖𝑖,𝑗𝑗𝜃𝜃𝑖𝑖𝑎𝑎𝑗𝑗
𝑘𝑘

𝑖𝑖,𝑗𝑗=0

 (3) 

with the constants 𝑐𝑐𝑖𝑖,𝑗𝑗 denoting the polynomial coefficients of the powers and interac-
tions of 𝜃𝜃 and 𝑎𝑎. Therefore, the function can be approximated as a finite polynomial in 
two variables. To approximate the coefficients and determine the polynomial as precisely 
as possible, multiple regression is used on a representative norming sample for a given 
test (Figure 1 and following section) in order to select those powers of 𝑎𝑎, 𝜃𝜃 and their 
interactions up to the power parameter k that capture most of the variance in the norming 
sample. 

Subsequently, the resulting regression model can be used to estimate a person’s norm 
score 𝜃𝜃� given his or her actual test score 𝑟𝑟 and the value of the explanatory variable 𝑎𝑎 
by solving the equation 

𝑟𝑟 = � 𝑐𝑐𝑖𝑖,𝑗𝑗𝜃𝜃�𝑖𝑖𝑎𝑎𝑗𝑗
𝑘𝑘

𝑖𝑖,𝑗𝑗=0

 (4) 

for 𝜃𝜃�. By doing so for a specific range of raw scores and values of the explanatory variable, 
norm tables can be generated and added to the test manual. Interpreted from a graphical 
point of view, the approach corresponds to fitting a hyperplane to the three-dimensional 
data map consisting of raw scores, values of the explanatory variable and person locations 
for every person in the norm sample. Figure 1 illustrates this graphical interpretation by 
comparing discrete mapping between person location and raw score for each individual 
age group (left side) with the corresponding three-dimensional functional relationship: 

 
Figure 1. Visualisation of the norming approach as three-dimensional hyperplane fitting. 

In summary, the cNORM norming approach reduces the problem of test norming to 
a model selection problem: To find adequate test norms, it is necessary to determine the 
coefficients of Equation (4) and, therefore, to find a polynomial regression model describ-
ing the norming sample as precisely as possible with the minimal number of predictors. 

3.2. Finding an Adequate Model 
Since multiple regression is used to obtain an approximation of the finite Taylor se-

ries, it is not clear, which specific powers and interactions of person location and explan-
atory variable do have a relevant influence on the raw score and, therefore, should be 
included as predictors of the statistical model. Moreover, adding an increasing number of 
predictors to the regression model, the procedure can lead to overfitting and to norming 
errors consequently. To avoid these and other problems of model selection, cNORM uses 
the best subset regression approach [14] based on a branch-and-bound-algorithm by Mil-
ler [15] as implemented in the R package leaps [16–18]. Given a data set together with all 
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possible predictors, that is, all possible powers and interactions up to the maximum expo-
nent 𝑘𝑘, the subset regression approach returns a regression model, which describes the 
given norm sample as well as possible with a minimal number of predictors. The predic-
tors correspond to the coefficients of powers and interactions of person location and ex-
planatory variable as described in Equation (4) for a fixed parameter 𝑘𝑘. Since practical 
applications have shown that higher values do not lead to better model fit in most cases 
[8,13], cNORM uses 𝑘𝑘 = 4 by default, and therefore, no higher powers and interactions 
than four are included in the regression equation. Moreover, the risk of overfitting in-
creases with the number of included predictors. Therefore, we recommend using 𝑘𝑘 = 4 
as a default for starting the norming process and including higher powers and interactions 
only in cases where adequate model fit cannot be reached with this parameter. cNORM 
also contains tools to assess the possible effects of over- and under-fitting via methods of 
cross validation. In the case of overfitting, k should be reduced to 3 or even 2, or the age 
power parameter should be reduced independently from the location power parameter. 

3.3. Norm Score Approximation 
After finding an adequate regression model, it is necessary to compute a solution of 

Equation (4) with respect to 𝜃𝜃�. From a mathematical point of view, solving Equation (4) 
for 𝜃𝜃� is equivalent to finding the roots of a polynomial in one variable: 

𝑟𝑟 − � 𝑐𝑐𝑖𝑖,𝑗𝑗𝜃𝜃�𝑖𝑖𝑎𝑎𝑗𝑗
𝑘𝑘

𝑖𝑖,𝑗𝑗=0

= 0. (5) 

Instead of trying to solve (5) analytically, cNORM uses a numerical approach, more 
precisely, methods of numerical optimisation, by reformulating the problem of finding 
the roots into a minimisation problem. For this purpose, the left-hand side (5) is squared, 
and the resulting optimisation problem takes the following form: 

min
𝜃𝜃�
�𝑟𝑟 − � 𝑐𝑐𝑖𝑖,𝑗𝑗𝜃𝜃�𝑖𝑖𝑎𝑎𝑗𝑗

𝑘𝑘

𝑖𝑖,𝑗𝑗=0

�

2

. (6) 

Since squaring a real-valued function does not change the position of the function 
roots, every solution (5) is also a global solution of (6). If at least one real-valued solution 
of (5) exists, then the same also holds true for (6). Furthermore, every solution of (6) rep-
resents one of the desired solutions of Equation (5), since the minimised function (6) is 
non-negative valued. For (6), cNORM uses the optimize function of the R package stats 
[19]. Since the approach is based on a numerical procedure rather than an analytical solu-
tion, the resulting norm score does not reach the desired function value of zero exactly 
but with a sufficiently high precision. In case (5) does not have any root or the solution 
does not belong to the norm score range of the norm sample, cNORM returns the norm 
score within the range, which minimises Equation (6) and, therefore, approximates the 
desired norm score (for more detailed information about the exact implementation and 
optimisation algorithm used, see [9]). 

4. Generating Continuous Test Norms with cNORM 
To generate test norms using the cNORM approach with the corresponding software 

package, several steps are necessary. The three steps include: 
1. Data preparation and modelling 
2. Model validation 
3. Generating norm tables 

In the following section, these three steps are described and explained in detail both 
from a theoretical point of few as well as from the side of their practical application. In-
formation about the installation of RStudio and the cNORM R package can be found here: 
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[20]. We will first explain the steps of the process in more detail, before demonstrating a 
comprehensive function that applies all steps in one process. 

4.1. Data Preparation and Modelling 
The basis of every norming process is a sufficiently large and representative norming 

sample. Therefore, some authors recommend using random sampling but emphasise that 
a stratification of the norm sample could be necessary in the case of unbalanced data sets, 
especially when using small samples [13]. For example, to norm an intelligence test for a 
broad age range, it is necessary to stratify the norm sample with regard to the explanatory 
age variable, since an unbalanced set could lead to norming errors, especially in the un-
derrepresented age intervals. One major advantage of using statistical continuous norming 
models instead of simply applying inverse normal transformation per age group is the in-
creased statistical power, since the modelling draws on the complete data set. Consequently, 
smaller samples are already sufficient for obtaining a higher norm score precision compared 
to traditional norming approaches. For instance, with cNORM, 100 cases per age group al-
ready lead to more precise norms as compared to 250 cases in traditional norming [13]. 
Choosing a modelling approach like cNORM can thus not only close the gaps between norm 
tables but can also render test norming projects more cost efficient while improving data 
quality. For more detailed information to the process of representative sampling, see [21,22]. 

After establishing a representative norm sample, the data must first be imported in 
the R environment. It is advisable to start with a simply structured data object of type data 
frame or even a numeric vector containing raw score and explanatory variable. Missing 
data in the norm sample should be excluded before the actual norming process. Since the 
explanatory variable in psychometric performance tests is usually age, the term ‘age’ as 
well as the shortcut 𝑎𝑎 is used in the following to refer to the explanatory variable. In fact, 
the explanatory variable is not necessarily age but must in any case be an interval or nom-
inal variable. Finally, a grouping variable is necessary to break down the norm sample 
into smaller subsamples (for example grades or age groups). The method is relatively ro-
bust to changes in the granularity of the group subdivision and has little effect on the 
quality of the norm scores [8]. As a rule of thumb, the more the explanatory variable co-
varies with the measured test score, the more groups should be formed [13]. Conse-
quently, age groups need not necessarily be equidistant, or each contain a constant num-
ber of cases, but rather should increase in granularity at those areas where fast develop-
ment of the latent ability occurs. By default, cNORM assigns the variable name ‘group’ to 
the grouping variable. To divide the norming sample into adequate groups, the ‘get-
Groups’ method can be used. By default, the function divides the sample into groups of 
equal size and returns a vector containing the group mean of the explanatory variable for 
every subject. 

The next step is to rank each person in each group by using the ‘rankByGroup’ func-
tion, which returns percentiles and performs a normal-rank transformation using T-scores 
(M = 50, SD = 10) by default (z- or IQ-scores can also be used, and it is possible to define 
arbitrary scales by specifying mean and standard deviation). By doing so, every individ-
ual subject in the test sample is ranked in comparison to all other subjects in the same 
group. Different ranking methods (RankIt; Blom; Van der Warden; Tukey; Levenbach; 
Filliben; Yu and Hang) can also be used; however, by default RankIt was chosen. Instead 
of using a grouping variable respectively dividing the age variable into distinct age 
groups, one can also use the ‘rankBySlidingWindow’ method. This method draws on the 
continuous age variable and uses a sliding age interval to rank each subject in the norm 
sample relative to all other subjects whose age does not differ by more than half the width 
of the age interval from the age of the ranked subject. Grouping into distinct subgroups 
with the ‘getGroups’ function is thus not necessary. The width of the sliding age interval 
is set by specifying the function parameter ‘width’. For example, setting ‘width = 0.5’ by 
using age as a continuous variable in the unit ‘year’ means that the width of the age inter-
val is six months, and therefore, every subject is assigned a rank based on all other subjects 
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no more than three months younger or older than the person itself. The ranking by sliding 
window can be seen as a special case of ranking by group but with every subject being 
ranked with respect to all other subjects within a symmetric interval around the subject’s 
age value. Both ranking functions add the two columns ‘percentile’ and ‘normValue’ to 
the data, which are necessary for further computations. Moreover, descriptive infor-
mation for every group such as group mean and standard deviation is added to the data. 

The next step initiates the actual modelling process by determining a polynomial to 
express the raw score as a function of the estimated latent person parameter 𝜃𝜃� and the 
explanatory variable a. As described in Section 2 of this manuscript, we believe that the 
norm score assigned to a certain raw score reflects the estimated latent person parameter 
𝜃𝜃.�  In the following section, we do, however, refer to the norm scores as 𝑙𝑙 for location in-
stead of 𝜃𝜃�, because 𝑙𝑙 is the abbreviation used in the R package. To retrieve the model, all 
powers of the variables 𝑙𝑙 and 𝑎𝑎 up to a certain exponent 𝑘𝑘 together with all possible 
interactions are computed. To compute the desired powers, one should use the ‘com-
putePowers’ method. Please note that using a power parameter 𝑘𝑘 means to compute 
2 × 𝑘𝑘 + 𝑘𝑘2 new variables corresponding to the powers of 𝑙𝑙 and 𝑎𝑎 as well as their inter-
actions. Therefore, the number of used predictors for modelling the regression function 
grows in a quadratic manner with respect to 𝑘𝑘. As a rule of thumb, 𝑘𝑘 should be chosen 
to be smaller than 5; hence, higher values can lead to the overadjustment of the model. 
Alternatively, the power parameter for location and age can be set independently, with 
higher values for location and smaller powers for age, since age trajectories often can be 
modelled by quadratic or cubic polynomials. By default, cNORM uses 𝑘𝑘 = 4 for both lo-
cation and age, since practical application so far has shown a high goodness of fit with 
even a small number of predictors [1,8,13], and it also provides methods for cross valida-
tion, verification of the model assumptions, visual model inspection and visualisation of 
percentiles to determine the optimal setting. Applying the method to the norm data adds 
2 × 𝑘𝑘 + 𝑘𝑘2 columns to the data set representing the values of all possible predictors of the 
raw scores. 

The complete process of data preparation, containing ranking and computing pow-
ers can also be performed by using the function ‘prepareData’. Please note that when us-
ing this function, the names of the used grouping variable and raw score variable must be 
assigned to the parameters ‘group’ and ‘raw’, respectively. 

To start the computation of the targeted regression model, the next step is to use the 
‘bestModel’ function. There are several ways to use this function: By specifying 𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2 , 
the function returns the model that satisfies this requirement with the smallest possible 
number of predictors. Instead, one can specify a fixed number of predictors, and the 
method in turn delivers the model with the highest 𝑅𝑅𝑎𝑎𝑎𝑎𝑗𝑗𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢2  to this number of predic-
tors. Finally, a specific regression formula can be specified, and cNORM fits the regression 
weights accordingly. Since in most cases it is not possible to determine in advance how 
well the data can be modelled, the default settings are four for the number of predictors 
and 0.99 for 𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2 . If the targeted precision of the regression model in terms of 
𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2  is not reached, the method returns the model with all 𝑘𝑘2 + 2𝑘𝑘 allowed predic-
tors. However, the threshold of 𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2 = 0.99 is no ultimate criterion for model selec-
tion, since it depends on the covariance between the explanatory variable and the latent 
ability as well as on the size of the norm sample. It might even be suitable to reduce this 
value to 0.95 to smooth the percentiles and to avoid model overfitting. This can usually be 
achieved by reducing the power parameter k and/or the number of terms in the regression 
model. 

4.2. Model Validation 
The cNORM package contains a variety of methods for validating the resulting re-

gression model. For this purpose, it is helpful to remember the main idea of the norming 
approach. From a graphical point of view, the resulting regression function represents a 
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so-called hyperplane in three-dimensional space spanned by the three dimensions raw 
score, norm score and explanatory variable. 

On the one hand, it is necessary to evaluate the model in terms of whether it is suita-
ble to provide adequate test norms. If the resulting 𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2  is sufficiently high, the hy-
perplane usually models the manifest norm data over a wide range of all variables very 
well. However, since the approach is based on a Taylor polynomial, which usually has a 
finite radius of convergence, it is possible that there are age or performance ranges for 
which the regression function no longer provides plausible values. With a high 𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2 , 
this boundary of convergence is reached at the outer edges of the age or performance 
range of the norm sample or even beyond. These limits are not due to the used method 
only but also because the underlying test scales have only a limited validity range within 
which they are able to map a latent ability to a meaningful numerical test score (e.g., be-
cause of floor and ceiling effects and in general due to skewness of the raw score distribu-
tions). Therefore, norm tables and norm scores should generally only be issued within the 
validity range of the model. In addition, even if extrapolation to extreme raw scores that 
were not reached once in the norm sample yields plausible norm scores, such extrapola-
tion should be carefully considered. For determining the limits of the regression model 
and for identifying model violations, cNORM provides graphical and numerical methods 
to investigate the possible limitations of the computed model. First, the ‘plotPercentile’ 
function of cNORM can be used to visually check the model fit. This function plots the 
manifest as well as the approximated relation between raw scores and percentiles as func-
tions of the explanatory variable. By default, the maximum and minimum raw scores 
reached in the norm sample are used as the upper and lower limits of the plotted raw 
scores, but the range of plotted raw scores can also be set manually by using the function 
parameters ‘minRaw’ and ‘maxRaw’. It is important to make sure that the percentile lines 
do not intersect, because otherwise different percentile ranks would be assigned to the 
same raw score. As previously mentioned, intersecting percentile curves can occur when 
the regression model is extended to age or performance ranges that do not or only rarely 
occur in the norm sample. Moreover, intersecting percentile curves can be a sign of strong 
floor or ceiling effects in the test and are not necessarily due to the cNORM approach. 
From a mathematical point of view, intersecting percentile curves would implicate that 
the mapping from raw score to norm score is not unique for a fixed level of the explana-
tory variable. As a result, more than one norm score would be assigned to a given raw 
score, which would not only violate the model assumptions but also lead to problems in 
the practical application of norm scores. Second, one can use the ‘plotRaw’ function to 
compare fitted and manifest data for every group separately. The model fit is particularly 
good if all points are as close as possible to the bisecting line. However, it must be noted 
that deviations in the extremely upper and lower performance range often occur because, 
as already mentioned, the manifest data in these areas only rarely occur in the norm sam-
ple and are therefore afflicted with high measurement error. Alternatively, the ‘plotNorm’ 
method can be used, which delivers an equivalent plot as ‘plotRaw’ but uses norm scores 
instead of raw scores. Therefore, the plotted values should also approach the bisecting 
line as closely as possible. Both plots can be regarded as a graphical illustration of the 
accordance between predicted and observed values and, therefore, as a graphical visuali-
sation of the model fit. Finally, to check the monotonicity of the mapping function be-
tween latent variable and raw score, the ‘plotDerivative’ method can be used, which plots 
the first-order derivative of the regression function with respect to 𝑙𝑙. This method should 
be used to check whether there is any age or performance range with a zero-crossing, 
indicating a violation of the monotonicity. Please note that for example zero-crossings in 
the upper age and performance range do not necessarily mean that the modelling has 
completely failed, but that the test scale loses its ability to differentiate in this particular 
measurement range. This is important when subsequently norm tables are calculated from 
the model, since these performance ranges should be excluded from the tables. Alterna-
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tively, cNORM provides a ‘checkConsistency’ method, which scans all age and perfor-
mance ranges numerically to find any violation of the bijectivity in the regression function. 
We recommend using both methods to find any violation of the model assumptions, es-
pecially intersecting percentiles, but as well contra intuitive age progression and undulat-
ing percentile curves as a sign of overfit. 

Furthermore, it is also necessary to evaluate the model in terms of how well it fits the 
norm sample and whether it shows any signs of over- or under-fitting. For validating the 
derived model from a more statistical point of view, the ‘plotSubset’ function delivers 
additional information about 𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2  and other information criteria, such as Mallow’s 
𝐶𝐶𝑃𝑃  or 𝐵𝐵𝐵𝐵𝐵𝐵, depending on the number of predictors with fixed parameter 𝑘𝑘. Different 
charts are provided if the ‘type’ parameter is changed (1: 𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2 , 2: 𝐶𝐶𝑃𝑃, 3: 𝐵𝐵𝐵𝐵𝐵𝐵). The 
method can be especially helpful in case the resulting model seems to be invalid because 
of violations of consistencies in one or more measurement ranges. In addition, these in-
formation criteria can be particularly helpful in detecting any signs of over- or under-
fitting. Depending on the specific parameter, the method returns a visualisation of the 
chosen information criterion as a function of the number of used predictors. Moreover, 
cNORM provides the ‘cnorm.cv’ method, which is a validation function to obtain an im-
pression of the quality of the norming process. To this end, the method splits the data set 
into a training set (80%) and a validation set (20%), computes norming models with in-
creasing numbers of predictors starting with one predictor up to a specified number (pa-
rameter ‘max’) based on the training set, and compares the predicted with the observed 
scores of the validation set in terms of the root mean squared error (RMSE) of the raw 
score as well as the adjusted 𝑅𝑅2 of the norm score. Moreover, the method returns a cross-
fit value which can be used to identify the possible effects of under- or over-fitting. Cross-
fit values lower than one indicate signs of underfitting, while values greater than one sug-
gest overfitting. By setting the parameter ‘repetition’, the number of validation cycles, that 
is, the number of times the sample is split, and the cross validation is repeated can be 
specified. Please note that for every repetition it is necessary to rank the training and val-
idation set as well as to compute regression models with increasing numbers of predictors. 
For example, repeating the validation cycle ten times with a maximal number of predic-
tors of twelve, the norm sample must be divided and ranked ten times, and 10 × 12 =
120 regression models model must be computed. Consequently, the computational effort 
increases rapidly with the maximum number of predictors and the number of repetitions, 
leading to high computational duration. As a rule of thumb , crossfit values within 
[0.90; 1.10] are acceptable, while lower and, respectively, higher values should be seen as 
evidence of underfitting and, respectively, overfitting. Further research is necessary to in-
vestigate lower and upper bounds of crossfit values as indicators for under- and over-
estimation in more detail 

4.3. Generating Norm Tables 
While the actual norming process provides a pure functional expression in a statisti-

cal sense, the cNORM package also contains methods to retrieve lists of norm scores for 
specific raw scores and, vice versa, raw scores for specific norm scores. Additionally, 
cNORM contains a variety of methods for the visualisation of norm curves. 

First, cNORM provides the ‘getNormCurve’ method, which returns the fitted raw 
scores for a specific norm score. For example, specifying the norm score as T = 50 in terms 
of a T-score, the method plots the raw scores assigned to a norm score of T = 50 as a func-
tion of the explanatory variable (e.g., age). By default, the plotted range of the explanatory 
variable is limited by the corresponding range of the norm sample but can be specified 
using the parameters ‘minAge’ and ‘maxAge’ to set the desired values. Please note that 
the estimated norm scores can differ greatly from the true ones if the used age values are 
extrapolated to values that are not contained in the norm sample. Therefore, extrapolation 
should be used cautiously or at least be marked in the test manual. 
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Second, the ‘plotNormCurves’ method can be used to visualise norm curves for more 
than one norm score simultaneously. For example, setting the ‘normList’ parameter to 
‘c(30, 40, 50, 60, 70)’ returns a visualisation of norm curves corresponding to the T-scores 
30, 40, 50, 60 and 70 in one plot. In addition to the percentile curves mentioned above, the 
visualisation can also be used for checking the model validity, since intersecting norm 
curves would indicate a misspecification of the statistical model. Moreover, intersecting 
percentiles can emerge also due to floor and ceiling effects, for example, if the test cannot 
adequately discriminate in extreme performance ranges. In this case, the corresponding 
raw score should be assigned to a percentile range rather than to a single norm score to 
indicate that test scores in this performance range should be interpreted cautiously. This 
is especially important in extremely low norm ranges, since decisions about school place-
ment and the like are often based on such norm scores. 

Third, the ‘predictNorm’ function can be used to predict the norm score for a single 
raw score given a specific age. For considering the limits of the model validity, the mini-
mum and maximum norm score can be specified by setting the parameters ‘minNorm’ 
and ‘maxNorm’ to the corresponding values. Likewise, the ‘predictRaw’ method returns 
the predicted raw score for a specific norm score and age. 

When it comes to test application and automatised scoring and interpretation of test 
results, the statistical model is completely sufficient to provide norm scores with a pre-
specified precision for any level of the explanatory variable. In real-world scenarios, how-
ever, manual scoring is still very common, which is why in most cases norm tables must 
also be provided for users. One of the major advantages of statistical norming models is 
the possibility to also decide on the granularity of the norm tables and to provide norm 
scores even for those raw scores or levels of the explanatory variable for which no manifest 
data are at hand [13]. In typical scenarios like achievement tests, the available norms are 
often referred to an entire grade level. By contrast, continuous norming methods like 
cNORM can, for example, provide norms per months or per week, theoretically even 
down to the exact day. Additionally, there are no missing values in the norm tables any-
more, and there is even the possibility for cautious extrapolation to age or performance 
ranges not contained in the norm sample. To this end, cNORM provides functions to gen-
erate norm tables with either the assignment of norm scores to raw scores or vice versa: 
The ‘normTable’ method returns the corresponding raw scores for a specific age or vector 
of ages. Using the parameter ‘step’, the desired interval between two norm scores can be 
set. Furthermore, if a coefficient of reliability is entered, confidence intervals for the norm 
scores and the percentile ranks are also computed automatically. 

In equivalence to the ‘normTable’ function, the ‘rawTable’ method can be used to 
assign predicted norm scores to a predefined series of raw scores at a certain age. The 
function is very useful in case the exact percentiles or the exact norm scores are to be de-
termined for all raw scores that may occur in a given test scale and for a given range of 
the explanatory variable. By setting the parameter ‘step’, the desired precision for the raw 
scores can be specified. Since predicting the norm score for a given raw score and age 
requires an inversion of the regression function, with the latter being determined numer-
ically, the computational of the ‘rawTable’ method increases with the higher precision and 
smaller step size. 

5. Step-by-Step Example: Continuous Norming of a Reading Comprehension Test 
To give a detailed example of the cNORM norming process following the already-

mentioned three necessary steps, the norming sample of the sentence completion subtest 
of a German reading comprehension test named ELFE 1–6 [23] is used in what follows. 
The data set is already included in the cNORM R package and can directly be retrieved. 
In the first step, the data is assigned to the ‘data.elfe’ variable, and the ‘head’ method is 
used to obtain a first impression of the data set (Figure 2). 

As can be seen, there is no age variable in the data set, only person ID, a raw score, 
and a grouping variable. In this case, the grouping variable also serves as a continuous 
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explanatory variable since children were only examined at the very beginning and the 
exact middle of the school year during the test standardisation. For example, a value of 
2.5 indicates that the corresponding participants were examined in the middle of the sec-
ond grade. Another possibility would have been to examine children throughout the en-
tire school year instead and to use the schooling duration as a continuous variable. To 
build the grouping variable, the first and second half of each year could, for example, be 
aggregated into one group, respectively. Since the participants in this sample are grouped 
already, it is not necessary to use the ‘getGroups’ method. In the data set, there are seven 
groups with 200 cases each, totalling 1400 cases: 
 
# Example dataset based on a reading comprehension test 
data.elfe <- elfe 
 
# Inspect the first six lines of the data set 
head(elfe) 

 
Figure 2. Structure of the included ELFE data set. 

5.1. Data Preparation and Modelling 
The next step is to apply the ‘rankByGroup’ method. Please note that the aforemen-

tioned ‘rankBySlidingWindow’ method is no valid alternative in this case, because the 
used explanatory variable is no continuous variable. The RankIt method is chosen as rank-
ing method by setting the ‘method’ parameter to ‘4’. In addition, T-scores with M = 50 and 
SD = 10 are chosen as norm scale. As already mentioned, other scales can be used by spec-
ifying the mean and standard deviation as a vector to the ‘scale’ parameter of the method 
(for example, IQ-scale can be used by setting ‘scale = c(100, 15)’ instead). If the entire sam-
ple is to be ranked without a grouping or explanatory variable, the optional parameter 
‘group’ must be set to ‘FALSE’. By doing so, the rank of every subject is determined with 
respect to the whole norming sample. If a grouping variable with a name other than 
“group” is to be used, the “group” parameter must be set to this very name: 
 
# Rank by variable group and generate T scores 
normData <- rankByGroup(data.elfe,  

group = 'group',  
raw = 'raw',  
scale = 'T',  
method = 4) 

 
# Inspect the resulting data set 
head(normData) 
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A short inspection of the resulting data set shows that various columns such as man-
ifest percentiles, mean and standard deviation of the corresponding group were added to 
the data set, as previously described (Figure 3). 

 
Figure 3. Result of the inverse normal transformation of the manifest data, including manifest per-
centiles and norm scores (T-scores) as well as group-specific descriptive data. The column 
‘normValue’ will serve as the location l in the following. 

The last column contains the manifest norm scores with respect to the corresponding 
group, expressed as T-scores. These values and the grouping variable are used in the next 
step of the data preparation procedure to calculate powers and interactions. To this end, 
the method ‘computePowers(normData)’ is used. The function appends the resulting 
powers and interactions of norm score and grouping variable to the data set as columns 
(Figure 4). 

 
Figure 4. Prepared data set containing powers and interactions of location (manifest norm score) 
and age. 

As mentioned, cNORM calculates powers and interactions up to an exponent of 𝑘𝑘 =
4 by default. Thus, a total of 4 × 4 + 2 × 4 = 16 + 8 = 24 predictors are added to the 
data set as additional columns. To start the actual modelling process, the ‘bestModel’ func-
tion is used with a default stopping criterion of 𝑅𝑅2 = 0.99. The resulting model contains 
four predictors plus an intercept and captures more than 99% of the variance of the norm 
data. For a more detailed summary, cNORM’s ‘summaryModel’ can be applied to the 
norm model: 
 
# Compute best regression model, default R2 = 0.99 
model <- bestModel(preparedData) 
summaryModel(model) 
 
# Output: 
Final solution: 4 terms 
R-Square Adj. = 0.991943 
Final regression model: raw ~ L1A2 + L1A4 + L3 + L4A1 
Regression function: raw ~ −6.598905 + 0.0379676 × L1A2 − 0.0006587483 × L1A4 + 
9.255206e-05 × L3 − 2.910607e-07 × L4A1 
Raw Score RMSE = 0.64069 
 

The final solution, as chosen by the best subset approach, contains four predictors, 
namely 𝑙𝑙𝑎𝑎2, 𝑙𝑙𝑎𝑎4, 𝑙𝑙3 and 𝑙𝑙4𝑎𝑎, as well as an intercept. The resulting polynomial regression 
function in this case is as follows: 
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𝑟𝑟(𝑙𝑙,𝑎𝑎) = −6.599 + 0.038𝑙𝑙𝑎𝑎2 − 0.001𝑙𝑙𝑎𝑎4 − 2.912𝑙𝑙4𝑎𝑎. (7) 

Moreover, the deviation between observed and predicted raw scores seems to be suf-
ficiently small with a root mean squared error of 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 0.64069. In summary, the re-
sulting regression model seems to cover a great amount of the variance in the norm data 
combined with a small, global prediction error. 

5.2. Model Validation 
To obtain a first impression of the model fit in more detail, the ‘bestModel’ function 

automatically returns a visualisation of the observed and predicted percentile curves 
which can also be generated by using ‘plotPercentiles(model)’ (Figure 5). 

 
Figure 5. Observed (circles) and predicted percentile curves. 

The plot shows only a small deviation between observed and predicted values, which 
can be interpreted as a first sign for a good model fit. Jagged or curvy trajectories, which 
are most likely the result of sampling error, are smoothed, leading to a better estimation 
of the latent ability per age. Specifically, no intersecting percentiles curves are predicted. 
Therefore, the mapping from raw score and explanatory variable to norm score seems to 
be unique within the observed range of age and raw scores. The opposite case would be 
a sign that the computed model is not valid for describing the norming sample. By default, 
the range of the explanatory variable is set to the minimum and maximum values of the 
used data set. As already mentioned before, we recommend using the computed model 
only for predictions within the range of the norm sample, since extrapolation can lead to 
large prediction errors. Another way to inspect the model is to compare the observed and 
fitted data in terms of the raw score with plotRaw(model). The method plots the observed 
against the predicted raw score and delivers information about the model fit in terms of 
correlation and RMSE (Figure 6). 
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Figure 6. Observed and predicted raw and norm scores. 

The visual inspection reveals only a small deviation between observed and predicted 
raw scores in line with a high correlation (𝑟𝑟 = 0.9954) and a small root mean squared error 
(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 0.6835). The ‘plotNorm’ functions deliver a nearly identical result. While the 
regression model seems to deliver nearly perfect predictions for the average performance 
range around T-scores of 50, higher deviation can be observed in the strongly below-av-
erage range of T < 30. Although the model seems to fit quite well overall in this case, the 
example still shows that the goodness of fit usually varies within the targeted measure-
ment range. Higher deviations in the more extreme performance ranges may also be due 
to the fact that many tests contain only a low number of items that are very easy or very 
difficult. For investigating the model consistency in terms of monotonicity, the function 
checkConsistency(model) method may be used. The function examines whether model 
assumptions are violated using the derivative of the regression function and returns in-
formation as well as hints for exploring them further. In the case of the model of the ex-
ample, it issues the following warning: “Violation of monotonicity at age 5. At least 1 violations 
of monotonicity found within the specified range of age and norm score. Use 'plotNormCurves' to 
visually inspect the norm curve or 'plotDerivative' to identify regions violating the consistency. 
Rerun the modelling with adjusted parameters or restrict the valid value range accordingly. Be 
careful with horizontal and vertical extrapolation. The original data for the regression model 
spanned from age 2 to 5, with a norm score range from 21.93 to 78.07. The raw scores range from 
0 to 28.” 

The procedure indicates a possible violation of the model assumptions in the fifth 
grade. (Please note that the variable 𝑎𝑎 normally denotes age, but that in this particular 
case the grade level was used instead.) For further investigation, the ‘plotDerivative’ func-
tion can be used, which returns a visualisation of the derivative of the regression model 
with respect to 𝑙𝑙. In order to ensure a bijective relation of norm and raw scores, the slope 
must be either consistently positive or negative at all age and performance ranges. Zero-
crossings indicate intersecting percentile lines. Thus, the yellow areas in this map indicate 
model violations or regions, where the model is less precise. In the current example, this 
is the case at high performance levels in the fifth grade, resulting from a ceiling effect of 
the test scale (Figure 7, indicated in red in the right upper edge). 
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Figure 7. Derivative of the regression function. 

Consequently, in the fifth grade and in the highest performance range, higher raw 
scores lead to lower norm scores, which is a violation of the measurement assumptions. 
Obviously, the difficulty of the scale does not allow for differentiation in this performance 
range of grade five. The example shows that extrapolated norm scores should be used 
cautiously. Since the derivation shows no other zero-crossing, the regression model seems 
to be valid within all other ranges of the norm sample. 

Please note that the slope depicted here relates to the first partial derivative of the 
regression function with respect to 𝑙𝑙 not with respect to 𝑎𝑎. Negative slopes with respect 
to the explanatory variable, in contrast, are not a sign of model inconsistency. For example, 
in the case of fluid intelligence, empirical data show an increase in performance during 
childhood and adolescence but a decrease (i.e., negative slope) after the age of 25 years 
[24]. This declining trajectory over age can usually be modelled with cNORM without 
problem. Therefore, the norming results should also be validated from a theoretical point 
of view regarding the measured latent ability. 

5.3. Validation in Terms of Model Fit 
For validation in terms of different information criteria, the ‘printSubset(model)’ 

method can be used. The method returns a table containing adjusted 𝑅𝑅2, Mallow’s 𝐶𝐶𝑃𝑃, 
𝐴𝐴𝐴𝐴𝐴𝐴 and 𝐵𝐵𝐵𝐵𝐵𝐵 for the best models chosen by the best subset regression in dependence of 
the number of contained parameters (Figure 8). 
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# Getting information criteria for best models with number of predictors 
# varying from one to k2 + 2k numbers of predictors 
printSubset(model) 

 

Figure 8. Information criteria for best models. 

As can be seen from Figure 8, the criterion of 𝑅𝑅2 ≥ 0.99 is only met when at least 
three predictors are in included in the regression function. These are the predictors re-
turned by the ‘bestModel’ method, with a raw score 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 of 0.641. For a graphical vis-
ualisation of the relationship between number of predictors and the model fit, the 
‘plotSubset’ method returns an adequate illustration (Figure 9). 

 
Figure 9. Explained variance depending on number of predictors. 

As can be seen here, the cut-off is set to the default value of 0.99. As to be expected, 
increasing the number of predictors to more than three results is only a slight improve-
ment of the adjusted 𝑅𝑅2. Therefore, the number of three or four terms chosen by the ‘best-
Model’ method seems to deliver a sufficient norming model, while smoothing the percen-
tile curves and cleaning sampling error variance. To investigate possible over- or under-
fitting of the model with four predictors, cross validation of the regression model (func-
tion ‘cnorm.cv’) can be used: 
 
# Cross validation, repeated 10 times with an upper limit of 12 terms  
cnorm.cv(preparedData, repetitions = 10, max = 12) 

By using this method, the data set is divided into a training set containing 80% of the 
complete sample and a validation sample with 20% of the norming sample. Subsequently, 
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the best regression models are computed with increasing numbers of terms starting from 
one until the specified number of predictors (by ‘max’ parameter). Finally, for every re-
sulting training model, the model is projected on the validation data to independently 
estimate the model fit for data not included in the modelling process. This procedure is 
repeated n times (in this example: ten times), and the results are visualised, as can be seen 
in Figure 10. 

 
Figure 10. Results of cross validation. 

While none of the models shows serious signs of over- or under-fitting, 𝑅𝑅2 of the 
norm scores increases only slightly when more than four predictors are used in the regres-
sion model, i.e., the model can barely be improved by including more than four predictors. 
This finding seems to be consistent with the aforementioned output of the ‘printSubset’ 
method. Therefore, the selected regression model is an adequate, parsimonious and effi-
cient norming model. 

5.4. Generating Norm Tables 
After selecting an adequate norming model, the final step of the norming procedure 

is to generate norm tables, which should be included in the test manual. For this purpose, 
we choose the ‘rawTable’ method to transform a series of raw scores, which can be speci-
fied by the user, into a series of norm scores as well as corresponding percentiles: 
 
# Compute raw table for given age between T-scores 25 and 75 for age / grade 3 
raw.table <- rawTable(3, model, rel = 0.96) 

The table can be restricted in its range by specifying the minimum and maximum 
norm scores (minNorm, maxNorm) as well as the minimum and maximum raw scores 
(minRaw, maxRaw). By default, the function retrieves these boundaries based on the val-
ues in the data set. Increasing these values leads to extrapolation and elevates the risk of 
model violations. By specifying the scale reliability and confidence coefficient, the confi-
dence intervals are included in the output both for the norm scores and the percentiles. 
Therefore, the lower and upper bounds are estimated by 

𝑙𝑙𝛼𝛼;1−𝛼𝛼 = 𝑙𝑙 ± 𝑧𝑧𝛼𝛼;1−𝛼𝛼 × �𝑟𝑟𝑟𝑟𝑟𝑟 × (1 − 𝑟𝑟𝑟𝑟𝑟𝑟). (8) 
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The resulting raw table is illustrated in Figure 11. 

 
Figure 11. Raw table for grade level 3.0. 

5.5. In a Nutshell 
Besides these detailed steps, cNORM features convenience methods and standard S3 

methods in R to abridge the process via the general function ‘cnorm’, as described in the 
following short syntax: 
 
# In order to rank the data, compute powers and determine the regression function, the 
# convenience method ‘cnorm’ can be used with numerical vectors. The resulting object 
# includes the ranked data via object$data and model via object$model and it can be used 
# with all plotting methods. 
cnorm.elfe <- cnorm(raw = elfe$raw, group = elfe$group) 
 
# Plot R2 of different model solutions in dependence of the number of predictors 
plot(cnorm.elfe, "subset", type = 0)        # plot R2 
plot(cnorm.elfe, "subset", type = 3)        # plot MSE 
 
# To select a good fitting model, the analysis is usually rerun with a fixed number of terms, 
# e. g. four. Avoid models with a high number of terms: 
cnorm.elfe <- cnorm(raw = elfe$raw, group = elfe$group, terms = 4) 
 
# Visual inspection of the percentile curves of the fitted model 
plot(cnorm.elfe, "percentiles") 
 
# Visual inspection of the observed and fitted raw and norm scores 
plot(cnorm.elfe, "norm") 
plot(cnorm.elfe, "raw") 
 
# In order to check, how other models perform, plot series of percentile plots with 
# ascending number of predictors, in this example up to 14 predictors. 
plot(cnorm.elfe, "series", end = 14) 
 
# Cross validation of number of terms with 20% of the data for validation and 80% 
# training. Due to the time intensity, max terms is restricted to 10 in this example. 
cnorm.cv(cnorm.elfe$data, max = 10, repetitions = 3) 
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# Cross validation with pre-specified terms, e. g. of an already existing model 
cnorm.cv(cnorm.elfe, repetitions = 3) 
 
# Print norm table (for grade 3, 3.2, 3.4, 3.6; see electronic Supplement Table S1) 
normTable(c(3, 3.2, 3.4, 3.6), cnorm.elfe) 
 
# The other way round: Print raw table (for grade 3; see electronic Supplement Table S2) 
together 
# with 90% confidence intervals for a test with a reliability of 0.94 
rawTable(3, cnorm.elfe, CI = 0.9, reliability = 0.94) 
 
# cNORM includes a graphical user interface, based on shiny that runs locally in the 
# browser and contains the most important functionality 
cNORM.GUI() 

6. Conclusions 
Norm scores are an essential source for the interpretation of test results when it comes 

to applied psychometrics and individual diagnostics. The field of norm score generation 
so far does not capture the full potential of statistical data modelling and largely stays 
entrenched at the level of a pure description of the manifest data distribution per age 
group. This shortcoming entails several disadvantages such as high sample size require-
ments and the inclusion of sampling errors in the resulting norm score tables. Large age 
intervals in the norm tables can lead to significant bias if the age of a person differs from 
the average age of the respective subsample. cNORM overcomes or mitigates many of 
these problems. It allows one to establish regression-based continuous norming models 
describing the development of a latent variable across explanatory variables such as age. 
This procedure does not only improve the quality of norm scores but also requires smaller 
sample sizes of less than 100 cases per norm group, rendering test development more cost 
efficient [13]. Furthermore, it closes gaps within and between the tables, enables the com-
putation of norm scores for any level of the explanatory variable within the valid range of 
the norming model and even allows for cautious extrapolation at upper and lower ability 
levels and beyond the age range of the norm sample. It provides methods for assessing 
the model fit and the generation of norm tables and enables test users to evaluate the pre-
cision of the norm scores. We hope that the package contributes to the design of high 
quality instruments, improves the precision in individual diagnostics and contributes to 
progress in the field of norm score modelling. 

Supplementary Materials: The following are available online at www.mdpi.com//3/3/33/s1, Table 
S1: normTable, Table S2: rawTable. 
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